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A B S T R A C T   

Type 2 diabetes is a major public health concern. Several studies have found an increased diabetes risk associated 
with long-term air pollution exposure. However, most current studies are limited in their generalizability, 
exposure assessment, or the ability to differentiate incidence and prevalence cases. We assessed the association 
between air pollution and first documented diabetes occurrence in a national U.S. cohort of older adults to es
timate diabetes risk. We included all Medicare enrollees 65 years and older in the fee-for-service program, part A 
and part B, in the contiguous United States (2000–2016). Participants were followed annually until the first 
recorded diabetes diagnosis, end of enrollment, or death (264, 869, 458 person-years). We obtained annual 
estimates of fine particulate matter (PM2.5), nitrogen dioxide (NO2), and warm-months ozone (O3) exposures 
from highly spatiotemporally resolved prediction models. We assessed the simultaneous effects of the pollutants 
on diabetes risk using survival analyses. We repeated the models in cohorts restricted to ZIP codes with air 
pollution levels not exceeding the national ambient air quality standards (NAAQS) during the study period. We 
identified 10, 024, 879 diabetes cases of 41, 780, 637 people (3.8% of person-years). The hazard ratio (HR) for 
first diabetes occurrence was 1.074 (95% CI 1.058; 1.089) for 5 μg/m3 increase in PM2.5, 1.055 (95% CI 1.050; 
1.060) for 5 ppb increase in NO2, and 0.999 (95% CI 0.993; 1.004) for 5 ppb increase in O3. Both for NO2 and 
PM2.5 there was evidence of non-linear exposure-response curves with stronger associations at lower levels (NO2 
≤ 36 ppb, PM2.5 ≤ 8.2 μg/m3). Furthermore, associations remained in the restricted low-level cohorts. The O3- 
diabetes exposure-response relationship differed greatly between models and require further investigation. In 
conclusion, exposures to PM2.5 and NO2 are associated with increased diabetes risk, even when restricting the 
exposure to levels below the NAAQS set by the U.S. EPA.   

1. Introduction 

Type 2 diabetes mellitus (T2DM) is a major public health concern 
rising rapidly, with the number of people diagnosed with the disease 
worldwide more than doubling in the past 20 years (Zimmet et al., 
2014). T2DM may cause major complications, including blindness, 
cardiovascular damage, and premature mortality (Papatheodorou et al., 
2016), it is therefore important to identify determinants of the disease. 

Like many chronic conditions, type I diabetes mellitus (T1DM) and 
T2DM have a genetic component, but genetics alone explains only a 
small portion of the variance. Studies show that in T2D, which repre
sents over 99% of diabetes cases globally (Rajagopalan and Brook, 
2012), genetics and environmental exposures play a significant role 
(Kaprio et al., 1992). In the last few decades, environmental research 
focused primarily on behavioral factors, such as inactivity and diet. 
However, in recent years, cardiometabolic risk was linked to various 

Abbreviations: CCW, Chronic Conditions Warehouse; NAAQS, national ambient air quality standards; T1DM, Type 1 diabetes mellitus; T2DM, Type 2 diabetes 
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environmental components, including the social environment (Basile 
Ibrahim et al., 2021; Khan et al., 2021), environmental pollutants 
(Dendup et al., 2018; Rajagopalan and Brook, 2012), and, more spe
cifically, air pollution (Andersen et al., 2012; Brook, 2008; Brook et al., 
2010; Chandrabose et al., 2019; Y Li et al., 2019; Park and Wang, 2014). 

Several studies have found an increased diabetes risk associated with 
air pollution exposure, with most studies focusing on fine particulate 
matter (PM2.5) exposure (Yang et al., 2020). A study of 4.5 million US 
veterans have found PM2.5 exposure to be associated with excess burden 
of death due to T2DM (Bowe et al., 2019). Another study in the UK have 
found higher risk for T2DM incidence and complications associated with 
PM2.5 exposure (Zou et al., 2022). Finally, a 2020 meta-analysis of 11 
studies concluded that each ten μg/m3 difference in long-term PM2.5 
exposure was associated with 10% higher T2DM incidence risk and 8% 
higher T2DM prevalence risk (Yang et al., 2020). 

Fewer studies have investigated the association between nitrogen 
dioxide (NO2) exposure and diabetes. For example, a US study among 
the National Institutes of Health American Association of Retired Per
sons Diet and Health Study found increased diabetes mortality risk 
associated with long term NO2 exposure (Lim et al., 2018). Additionally, 
a 2020 meta-analysis of 7 studies have found a 7% increase in T2DM 
prevalence associated with ten μg/m3 increase in long-term NO2 expo
sure. No significant association was observed with diabetes incidence 
(Yang et al., 2020). Diabetes, PM2.5, and NO2 associations were observed 
in other systematic reviews as well (Eze et al., 2015; Liu et al., 2019). 
However, evidence regarding ozone (O3) is scarce, with studies showing 
inconsistent results (LaKind et al., 2021; Yang et al., 2020). 

In this study, we aim to assess the association between long-term air 
pollution exposure and first documented diabetes occurrence. Our study 
combines the benefits of a national large-scale study with the ability to 
measure disease incidence. Studies of long-term exposures to air pollu
tion have generally relied either on large administrative datasets using 
hospital admissions data to identify chronic diseases (Zanobetti et al., 
2009), or on cohort studies, with detailed information on personal 
predictors but with participant numbers only in the thousands (Puett 
et al., 2011). These smaller cohorts are generally limited to a sample of 
volunteers and are therefore less representative of the total population 
(Grundy et al., 1998). In this national analysis, we use the Medicare 
Chronic Conditions Warehouse (CCW) data to approximate disease 
incidence. Unlike previous studies that did not capture diagnoses of 
non-emergent visits, in CCW, the first occurrence of chronic conditions 
can be identified using an algorithm that incorporates information from 
inpatient, outpatient, skilled nursing facility, home health, and carrier 
(physician) claims (warehouse 2015). With this information, we will 
approximate incidence cases in a population-based cohort with tens of 
millions of older adults in the U.S. 

Additionally, our use of highly spatiotemporally resolved exposure 
models reduces bias due to exposure misclassification. In addition, un
like most national studies or chronic air pollution effects, we use 
comprehensive chronic conditions data on Medicare enrollees across the 
U.S. Finally, we focus on the effect of air pollution exposure below the U. 
S. Environmental Protection Agency (EPA) national ambient air quality 
standards (NAAQS) and provide robust scientific evidence for decision- 
makers to use in the review of air quality standards (Di et al., 2020). 

2. Methods 

2.1. Study population 

Medicare is the largest health insurance provider in the U.S., 
covering over 95% of the population over 65 years of age. It is an open 
cohort that enrolls new members every year and contains a represen
tative sample of older adult population in the U.S. We included all 
Medicare enrollees who were 65 years and older in the fee-for-service 
(FFS) program, part A and part B, in the contiguous U.S. between the 
years 2000–2016. Medicare part A provides inpatient (i.e., hospital) 

coverage and Medicare part B provides outpatient coverage. Most ben
eficiaries receive these services through the FFS program offered 
through the federal government. We limited the data to person-years 
included in these programs because the algorithm used to identify 
chronic conditions utilizes claims covered by these three programs. We 
entered participants into the cohort on January 1 after they became 
Medicare participants and followed participants for each calendar year 
within the observation period until the first recorded diabetes diagnosis, 
end of enrollment in either of the mentioned Medicare programs, or 
death – whichever came first. Medicare coverage is renewed annually 
and annual enrollment in these three programs is documented for each 
participant, allowing us to identify individuals who are no longer 
enrolled. To avoid gaps in follow-up, once enrollment in the FFS, 
Medicare part A or B programs was terminated, those participants were 
no longer included in the cohort even if they renewed their enrollment in 
later years within the observation period. 

This study was approved by the Center for Medicare and Medicade 
services, 2015 (CMS) under the data use agreement (#RSCH-2020-55, 
733), the Institutional Review Board of Emory University 
(#STUDY00000316), and the Institutional Review Board of Mount Sinai 
(STUDY 20–01344), and a waiver of informed consent was granted. 
The Medicare dataset was stored and analyzed in the Rollins 
High-Performance Computing (HPC) Cluster at Emory University, in 
compliance with Health Insurance Portability and Accountability Act 
(HIPAA). 

2.2. Outcome 

We obtained information on diabetes status from the CCW database. 
This database has been used in many studies evaluating chronic condi
tions among the older adult population in the U.S (Lochner et al., 2013; 
Shi et al., 2020; Shi et al., 2021b). The CCW algorithms were developed 
based on prior research using Medicare claims data to identify various 
chronic conditions. Diabetes is identified using an algorithm that in
corporates claims indicating that an individual received a healthcare 
service for diabetes. The algorithm combines inpatient, outpatient, 
skilled nursing facilities, home health claims, or carrier claims (pri
marily doctor visits) (warehouse 2015). To be diagnosed with diabetes, 
beneficiaries must have at least one claim with the international clas
sification of disease codes of diabetes (ICD-9 or ICD-10) from either 
inpatient, skilled nursing facility, home health, or part B services within 
two years. This algorithm was found to have 71.5% sensitivity and 
97.8% specificity (Hebert et al., 1999). To better approximate incident 
cases, we excluded individuals diagnosed with diabetes before or in their 
first year of enrollment. 

2.3. Exposures 

Our study was focused on three principal air pollutants linked to 
cardiometabolic health: PM2.5, O3, and NO2. PM2.5 are fine inhalable 
particles, smaller than 2.5 μm, comprising a mixture of solids and liq
uids. NO2 is an air pollutant that originates mostly from traffic and high- 
temperature combustion processes (Lim et al., 2013). O3 at the ground 
level is formed naturally and following a chemical reaction - where air 
pollutants emitted from sources such as traffic, industry, and wildfires (i. 
e., nitrogen oxides and volatile organic compounds) react with sunlight 
and organic gases, principally from vegetation (Lange et al., 2018). 

We obtained predictions of PM2.5 (24-h average, μg/m3), NO2 (daily 
1-h maximum, ppb) and ozone (daily maximum of 8-h average, ppb) 
exposures from validated prediction models calibrated to measurements 
at approximately 2000 monitoring stations using an ensemble of three 
machine learners (neural network, random forest, and gradient boost
ing) that provided daily estimates for a 1 km2 grid of the contiguous U.S. 
(Di et al., 2019, 2020; Requia et al., 2020). In brief, each machine 
learning algorithm incorporated more than 100 predictor variables from 
satellite data, land-use information, weather data, and chemical 
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transport model simulations. The predictions of the three learners were 
then integrated using a generalized additive model-based geographi
cally weighted-averaging technique. The model was calibrated using 
daily pollutants concentrations measured at EPA monitoring sites and 
demonstrated excellent model performance (average cross-validation 
R2 = 0.89, 0.84, and 0.86 for annual predictions of PM2.5, NO2, and 
O3, respectively). To align with the Medicare data, we aggregated 
gridded exposures to ZIP codes by averaging daily predictions of grid 
cells within each ZIP code annually. For ozone, we averaged the expo
sure only during the warmer months of each year (May–October), a 
commonly specified time window to examine associations with health 
outcomes (Wei et al., 2021). We selected this window because ozone 
formation is increased in warmer months due to its reaction with 
sunlight. 

2.4. Covariates 

The Medicare data is a dynamic cohort that includes individual-level 
information on the participants’ sex, race, age, Medicaid eligibility, and 
date of death. Medicaid is a joint federal and state program that provides 
health coverage to eligible low-income individuals. This was used in 
many studies as an indicator for low socioeconomic status (Schwartz 
et al., 2021; Yitshak-Sade et al., 2019a; Yitshak-Sade et al., 2019b; M. 
Yitshak-Sade et al., 2020; Yitshak-Sade et al., 2021). We additionally 
obtained the following ZIP code level covariates from the U.S. Census: 
median household income, population density, percent home renters, 
percent of residents with no high school education, and percent of the 
population self-identified as Black and Hispanic. We obtained data from 
available U.S. Census years and the annual American Community Sur
vey, and extrapolated values for missing years. We aggregated annual 
summer, and winter temperature ZIP code means from gridded Daymet 
1- km models (DAAC) 2020). 

2.5. Statistical analysis 

In a secondary data-based study, we investigated the effect of the 
three air pollutants simultaneously using a cox-equivalent re-parame
terized Poisson survival approach (Shi et al., 2020). To allow for 
strata-specific baseline hazard functions, we stratified the models by 
follow-up year, calendar year, ZIP code, sex, race (White, Black, other), 
age, and Medicaid insurance. We calculated diabetes counts in each 
follow-up year, calendar year, and ZIP code within strata specified by 
these individual characteristics, using the log of the corresponding total 
person-time as an offset. This approach is proven to be equivalent to a 
time-varying cox survival model using the Anderson-Gill formulation 
(Shi et al., 2020). We used the m-out-n bootstrap method to account for 
spatial autocorrelation of neighboring ZIP codes. This methods samples 
ZIP codes randomly for each bootstrap replicate, and estimates statis
tically robust confidence intervals (Bickel and Götze, 2012). First, we fit 
a multi-pollutant model using linear terms for the three pollutants. 
Then, to allow for nonlinear exposure-response curves, we used penal
ized spline functions for each of the pollutants. We fit three multi
pollutant models in which we used a penalized spline to estimate the 
exposure-response curve for one pollutant, and linear terms for the 
adjusted pollutants. We adjusted the models for annual summer and 
winter mean temperatures, population density, median household in
come, percent home renters, percent of residents without a high school 
diploma, and percent of the population self-identified as Black and 
Hispanic. 

To assess the effect of air pollution concentrations below the NAAQS, 
we created three restricted low-exposure subsets comprised of in
dividuals who were always exposed to exposure levels lower than the 
national standards within the study period. The first cohort was 
restricted to individuals only exposed to PM2.5 <12 μg/m. The second 
cohort was restricted to individuals only exposed to NO2 < 53 ppb. The 
third cohort was restricted to individuals only exposed to O3 < 50 ppb. 

As there is no annual standard for O3, we selected 50 ppb as a threshold 
to approximate the current World Health Organization global interim 
target 1 for peak-season average O3 concentration (WHO, 2005). 

2.6. Sensitivity analyses 

The exclusion of individuals who are not enrolled in the FFS, part A, 
and Part B programs can potentially induce a selection bias in the study. 
Biased results can also occur due to competing mortality risks. To avoid 
selection bias, we used inverse probability weights. Probabilities of 
enrollment in the cohort and probability of not dying were modeled, 
accounting for the subjects’ age, sex, race, Medicaid eligibility, and the 
ZIP code population density, percent population under the poverty line, 
percent population without a high school diploma, percent self-identify 
as Black and Hispanic. We calculated these probabilities using pooled 
logistic regressions. We then calculated the weight by multiplying the 
inverse probability of enrolling in the three programs with the inverse 
probability of being alive and calculated the averaged weight within 
each stratum of follow up year, calendar year, ZIP code, and individual 
characteristics. We then repeated the models incorporating the weights 
and compared the exposure-response curves with and without weights. 

3. Results 

We have included 264, 869, 458 person-years of 41, 780, 637 people. 
The mean age was approximately 76 years, 60% were women, and 90% 
were white. We observed 10, 024, 879 diabetes cases (3.8% of person- 
years) (Table 1). The mean and IQR values of the air pollutants were 
as follows: PM2.5 10.1 μg/m3 (4.2 μg/m3), O3 43.2 ppb (7.0 ppb), and 
NO2 18.9 ppb (13.7 ppb). The correlations with temperature and among 
the air pollutants were low to moderate (Supplementary Table 1), with 
the highest correlation observed between PM2.5 and NO2 (r = 0.44). 

Using linear terms, we observed an increased diabetes risk associated 
with 5 μg/m3 increase in PM2.5 (HR = 1.074, 95% CI 1.058; 1.089) and 
5 ppb increase in NO2 (HR = 1.055, 95% CI 1.050; 1.060). No linear 
association was observed with O3 (HR 0.999,95% CI 0.993; 1.004). We 
then used penalized spline functions to allow for nonlinear exposure- 
response curves and found evidence of nonlinear associations with the 
three pollutants (Fig. 1). Both for NO2 and PM2.5 we observed linear 
associations at the lower ends of the pollutants’ distributions. For PM2.5 
the associations were linear for levels<8.2 μg/m3 (the 25th percentile), 
followed by a plateaued association. For NO2 the associations were 

Table 1 
Population characteristics (264,869,458 person years).   

Summary statistics 

Individual characteristics 
Age, Mean (S.D.) 75.97 (7.7) 
Female sex, n (%) 158,138,886 (59.7) 
Race, n (%)  
White 238,995,206 (90.2) 
Black 14,986,036 (5.7) 
Other 10,888,216 (4.1) 
Medicaid insurance, n (%) 24,986,082 (9.4) 
Diabetes, n (%) 10,024,879 (3.8) 
Hypertension, n (%) 96,411,807 (36.4) 
Ischemic heart disease, n (%) 57,842,331 (21.8) 
Death, n (%) 1,125,608 (0.4) 
ZIP code characteristics 
Percent poverty, Mean (SD) 0.1 (0.1) 
a Population density, Mean (SD) 2650.1 (7854.1) 
b Median house value, Mean (SD) 195,301.5 (159,465.5) 
Percent Black population, Mean (SD) 0.1 (0.2) 
b Median household income, Mean (SD) 53,618.0 (22,608.6) 
Percent Hispanic population, Mean (SD) 0.3 (0.1)  

a Number of persons per square kilometer. 
b Median house worth value and median household income are presented in 

dollars. 
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linear for levels <36 ppb (94th percentile), followed by attenuated as
sociations. The O3 exposure-response curve was highly nonlinear with 
mostly negative associations. The association with NO2 was similar in 
the single pollutant and the multivariate models. For PM2.5, the asso
ciations were mostly similar between the single pollutant and multi
variate models, except for the plateaued association observed more 
clearly in the multivariate model. The O3 exposure-response curve 
differed greatly between the single and multipollutant models. Unlike 
the negative associations seen in the multivariate model, there was no 
clear trend in the association with the pollutant in the single pollutant 
model (Supplementary Fig. 1). 

Of the analytical dataset, 33.7% (89, 519, 417 person-years), 96.4% 
(255, 575, 750 person-years), and 54.4% (144, 225, 079 person-years) 
were only exposed to low-level annual PM2.5, annual NO2, and warm- 
season O3 during the study period, respectively. High-pollution ZIP 
codes excluded from the restricted datasets were mostly located in the 
mid-west, southeast, and the mid-Atlantic U.S. regions. We estimated 
the nonlinear exposure-response curves for the three pollutants in 
multivariate regressions in these restricted cohorts, and the associations 
with PM2.5 and NO2 remained similar and significant. For O3, there was 
no clear association with diabetes and the direction of the associations 
differed across the distribution of the pollutant (Fig. 2). 

Supplementary Table 2 shows the baseline characteristics of those 
included and excluded from the analytical dataset. Person-years 
included in the analytical dataset were of older people. In addition, 
the proportion of whites and women was larger, and the proportion of 
death was much smaller. We conducted a sensitivity analysis and 
repeated the models including inverse probability weights accounting 
for the probability of being enrolled in the cohort and alive. The results 
of the two models were very similar (Supplementary Fig. 2). 

4. Discussion 

In a large-scale, national cohort, we observed higher risks for dia
betes associated with increases in NO2 and PM2.5 exposures, even when 
restricting the data to exposure levels below the NAAQS set by the U.S. 
EPA. Results regarding the association with O3 were inconclusive. 

T2DM is characterized by high blood glucose levels and increased 
insulin resistance leading to vascular damage and metabolic dysfunc
tions (Cooper-DeHoff and Pepine, 2007). A growing body of literature 
links ambient air pollution exposure to diabetes risk, as concluded in 
several systematic reviews (Eze et al., 2015; Liu et al., 2019; Yang et al., 
2020). Studies also found associations between air pollution exposure 
and markers of potential underlying pathways of this association: lower 
insulin sensitivity (Wolf et al., 2016), and higher fasting glucose (Wolf 
et al., 2016; Yitshak Sade et al., 2016). Different mechanisms were 
proposed to explain the links between air pollution exposure and T2D. 
Oxidative stress is considered a major pathway to this association 
(Rajagopalan and Brook, 2012). PM exposure is associated with oxida
tive stress, which can lead to lipid peroxidation, reduction of antioxi
dants, and activation of pro-inflammatory processes (Birben et al., 2012; 
Brook et al., 2010). These, in turn, have a major role in the development 
and progression of metabolic syndrome and diabetes in particular 
(Hutcheson and Rocic, 2012; Lim and Thurston, 2019). Another sug
gested pathways are endothelial dysfunction (Hahad et al., 2019; 
Lederer et al., 2021), and air pollution-induced mitochondrial 
dysfunction (Alderete et al., 2018; Schooneman et al., 2013; Sourij et al., 
2011; Zhao et al., 2015), which decreases brown adipose tissue (Xu 
et al., 2011) and impairs glucose homeostasis and insulin sensitivity 
(Bartelt et al., 2011; Cannon and Nedergaard, 2004). 

We found higher diabetes risk associated with higher long-term 

Fig. 1. The association between PM2.5, NO2, and warm-months O3 exposure and diabetes occurrence. Fig. 1 shows the exposure-response curves for the association 
between PM2.5, NO2, and warm-months O3 and diabetes occurrence. We show the curve from the 0.5th percentile of PM2.5, i.e., with 0.5% poorly constrained 
extreme values excluded. Results are obtained from a multivariate model, adjusted for age, race, sex, Medicaid insurance, annual ZIP code means of summer and 
winter temperature, and annual ZIP code level sociodemographic variables. The model also includes a random intercept for each ZIP code and a spline function 
of year. 
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PM2.5 and NO2 exposures. Like our findings, a 2019 meta-analysis 
concluded that the odds for T2DM were 1.03 and 1.05 times higher 
for incremental increases of 10 μg/m3 in PM2.5 and NO2 exposures, 
respectively (Liu et al., 2019). We observed nonlinear associations with 
the pollutants. Like our findings, Paul et al., (2020) also observed 
nonlinear associations between PM2.5 and diabetes incidence and the 
changes in risk plateaued at higher PM2.5 concentrations. Additionally, 
as in our study, they observed a nearly linear association with NO2 
exposure up to approximately 35 ppb. The exposure range in our study 
was larger, with attenuated associations observed for NO2 levels higher 
than 36 ppb. This might be attributed to larger measurement error at 
these higher concentrations. 

Our study was conducted among the older adult population. Older 
adults, who already face higher rates of chronic diseases as well as un
derlying social and economic factors, were found to be particularly 
vulnerable to air pollution health effects in several studies (Honda et al., 
2017; Yang et al., 2020; Yang et al., 2018). The higher vulnerability 
among older individuals may be attributed to biologic susceptibility 
(Yang et al., 2020) and compromised physiological capacity to cope with 
air pollution exposure (Makri and Stilianakis, 2008). Studies conducted 
among younger populations also observed higher diabetes risk associ
ated with PM2.5 and NO2 exposures (Bai et al., 2018; Hansen et al., 2016; 
Renzi et al., 2018), suggesting that air pollution poses a cardiometabolic 
risk for younger populations as well. 

Studies assessing the association between O3, and diabetes are much 
more limited, and the direction of the observed associations is incon
sistent and varies greatly depending on the model covariates (LaKind 
et al., 2021). For example, a longitudinal cohort of 13,548 individuals in 
China found a 5.7% increase in diabetes incidence hazard associated 
with a ten μg/m3 increase in annual O3 exposure (Wang et al., 2022). 

However, two recent long-term studies did not find a significantly 
increased diabetes risk associated with O3 exposure in multipollutant 
models accounting for particulate matter (Jerrett et al., 2017; H Li et al., 
2019) and NO2 (Jerrett et al., 2017) exposures. Moreover, a 2021 review 
concluded that evidence on the association between O3 exposure and 
diabetes is insufficient to infer causality (LaKind et al., 2021). Our study 
also showed inconclusive results, possibly related to residual con
founding, exposure measurement error, or the complexities of simulta
neously estimating the effects of multiple air pollutants. 

The major findings of our study are the harmful air NO2, and PM2.5 
exposures cardiometabolic effects observed even from levels below the 
NAAQS set by the EPA. The Clean Air Act was last amended in 1990 and 
requires the U.S. EPA to set NAAQS that mitigate any harmful conse
quences of air pollution to human health and the environment (EPA, 
2021). However, recent studies suggest that these thresholds are insuf
ficient to protect human health. There is evidence of increased mortality 
risk associated with air pollution levels below the NAAQS (Danesh Yazdi 
et al., 2021; Di et al., 2017; Shi et al., 2016; Shi et al., 2021a; Wei et al., 
2020; Maayan Yitshak-Sade et al., 2020). In some previous analyses, the 
associations observed at the lower exposure distribution range were 
stronger than the higher range of the exposure distribution (Di et al., 
2017; Wei et al., 2020). This may be attributed to larger measurement 
error at the rarer higher exposure concentrations that is likely to 
attenuate the overall effect observed when considering the full ranges of 
the pollutant exposures in the analysis (Steenland et al., 2015). 
Regarding PM2.5, it is also possible that the composition of the particles 
is different for low and high pollution days (Shi et al., 2021a). 

Our study has several limitations. First, there are differences between 
people included and excluded from the cohort. This is a limitation of all 
studies that analyze claims data of the Medicare cohort. However, our 

Fig. 2. The association between low-levels air pollutants exposure and diabetes occurrence. Fig. 2 shows the exposure-response curves for the association between 
PM2.5, NO2, and warm-months O3 and diabetes occurrence, in subsets, restricted to ZIP codes in which the annual exposures levels have not exceeded the national 
ambient air quality standards during the study period (i.e., PM2.5<12 μg/m3, NO2 < 35 ppb, or O3 < 50 ppb). We show the curves from the 0.5th percentile of NO2, i. 
e., with 0.5% poorly constrained extreme values excluded. Results are obtained from a multivariate model, adjusted for age, race, sex, Medicaid insurance, annual ZIP 
code means of summer and winter temperature, and annual ZIP code level sociodemographic variables. The model also includes a random intercept for each ZIP code 
and a spline function of year. 
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sensitivity analysis suggests that our results were not biased due to 
differential probabilities of enrollment or death. Second, the Medicare 
data does not provide information on subtypes of diabetes or prediabetes 
state. However, because we assess incident cases among older adults, we 
are more likely to identify type II diabetes rather than type I. Addi
tionally, the Medicare data does not provide data on individual con
founders such as BMI, smoking, physical activity, or lifestyle. However, 
since exposure is assigned on a ZIP code level, neighborhood factors are 
more likely to confound the associations in our study. These neighbor
hood factors were accounted for in our models. Finally, we might have 
had exposure misclassification errors like other air pollution studies. 
However, the use of highly spatiotemporally resolved exposure models 
reduces this error. 

5. Conclusions 

In conclusion, assessing the simultaneous effects of particulate and 
gaseous air pollutants in a national cohort of older adults, we found 
increased diabetes risk associated with PM2.5 and NO2 exposure. The 
observed effects remained when restricting the data to exposure levels 
below the NAAQS. For ozone, the effects were inconclusive and require 
further investigation. Since current studies of the link between air pollu
tion and diabetes are scarce and often limited in quality or sample size, this 
national study may add robust evidence important for inferring the causal 
link between air pollution exposure and the development of diabetes. 
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